Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(1): 100862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116057

RESUMO

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Elonguina/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/genética , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases/química , DNA Helicases/ultraestrutura , Reparo do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Elonguina/química , Elonguina/ultraestrutura , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
2.
Mech Ageing Dev ; 173: 80-83, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752965

RESUMO

Progeroid syndrome is a group of disorders characterized by the early onset of diseases that are associated with aging. Best known examples are Werner syndrome, which is adult onset and results from disease-causing DNA sequence variants in the RecQ helicase gene WRN, and Hutchison-Gilford progeria syndrome, which is childhood-onset and results from unique, recurrent disease-causing DNA sequence variants of the gene LMNA that encodes nuclear intermediate filaments. Related single gene RecQ disorders are Bloom syndrome and Rothmund-Thomson syndrome. The RecQ disorders Cockayne syndrome and xeroderma pigmentosum result from disease-causing DNA sequence variants in genes involved in the nucleotide excision repair pathway. RECQ2018: The International Meeting on RECQ Helicases and Related Diseases was held on February 16-18, 2018 in Chiba, Japan. The purpose of the meeting was to facilitate clinical and research collaborations for the goal of developing effective treatments for RECQ disorders and other progeroid syndromes.


Assuntos
Síndrome de Cockayne , Distúrbios no Reparo do DNA , Reparo do DNA , Helicase da Síndrome de Werner , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Congressos como Assunto , Distúrbios no Reparo do DNA/enzimologia , Distúrbios no Reparo do DNA/genética , Distúrbios no Reparo do DNA/patologia , Humanos , Japão , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo
3.
RNA Biol ; 15(7): 845-848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29683386

RESUMO

Gene expression and DNA repair are fundamental processes for life. During the last decade, accumulating experimental evidence point towards different modes of coupling between these processes. Here we discuss the molecular mechanisms by which RNAPII-dependent transcription affects repair by the Nucleotide Excision Repair system (NER) and how NER activity, through the generation of single stranded DNA intermediates and activation of the DNA damage response kinase ATR, drives gene expression in a genotoxic scenario. Since NER-dependent repair is compromised in Xeroderma Pigmentosum (XP) patients, and having in mind that these patients present a high degree of clinical heterogeneity, we speculate that some of the clinical features of XP patients can be explained by misregulation of gene expression.


Assuntos
Reparo do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Expressão Gênica/efeitos da radiação , Xeroderma Pigmentoso/enzimologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Síndrome de Cockayne/enzimologia , Dano ao DNA , DNA Helicases/genética , Humanos , Mutação , RNA Polimerase II/metabolismo , Pele/efeitos da radiação , Transcrição Gênica/fisiologia , Raios Ultravioleta/efeitos adversos
4.
Chromosoma ; 122(4): 275-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23760561

RESUMO

Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS.


Assuntos
Proteínas de Transporte/metabolismo , Síndrome de Cockayne/metabolismo , Reparo do DNA , Transtornos de Fotossensibilidade/metabolismo , Transcrição Gênica , Ubiquitina Tiolesterase/metabolismo , Animais , Proteínas de Transporte/genética , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , Humanos , Transtornos de Fotossensibilidade/enzimologia , Transtornos de Fotossensibilidade/genética , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina
5.
Am J Hum Genet ; 92(5): 807-19, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23623389

RESUMO

Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Anemia de Fanconi/genética , Predisposição Genética para Doença/genética , Fenótipo , Xeroderma Pigmentoso/genética , Sequência de Aminoácidos , Sequência de Bases , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/patologia , Primers do DNA/genética , Anemia de Fanconi/enzimologia , Anemia de Fanconi/patologia , Evolução Fatal , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/patologia
6.
Mutat Res ; 752(2): 138-152, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23276657

RESUMO

Helicases have important roles in nucleic acid metabolism, and their prominence is marked by the discovery of genetic disorders arising from disease-causing mutations. Missense mutations can yield unique insight to molecular functions and basis for disease pathology. XPB or XPD missense mutations lead to Xeroderma pigmentosum, Cockayne's syndrome, Trichothiodystrophy, or COFS syndrome, suggesting that DNA repair and transcription defects are responsible for clinical heterogeneity. Complex phenotypes are also observed for RECQL4 helicase mutations responsible for Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Bloom's syndrome causing missense mutations are found in the conserved helicase and RecQ C-terminal domain of BLM that interfere with helicase function. Although rare, patient-derived missense mutations in the exonuclease or helicase domain of Werner syndrome protein exist. Characterization of WRN separation-of-function mutants may provide insight to catalytic requirements for suppression of phenotypes associated with the premature aging disorder. Characterized FANCJ missense mutations associated with breast cancer or Fanconi anemia interfere with FANCJ helicase activity required for DNA repair and the replication stress response. For example, a FA patient-derived mutation in the FANCJ Iron-Sulfur domain was shown to uncouple its ATPase and translocase activity from DNA unwinding. Mutations in DDX11 (ChlR1) are responsible for Warsaw Breakage syndrome, a recently discovered autosomal recessive cohesinopathy. Ongoing and future studies will address clinically relevant helicase mutations and polymorphisms, including those that interfere with key protein interactions or exert dominant negative phenotypes (e.g., certain mutant alleles of Twinkle mitochondrial DNA helicase). Chemical rescue may be an approach to restore helicase activity in loss-of-function helicase disorders. Genetic and biochemical analyses of disease-causing missense mutations in human helicase disorders have led to new insights to the molecular defects underlying aberrant cellular and clinical phenotypes.


Assuntos
Síndrome de Bloom/genética , Síndrome de Cockayne/genética , DNA Helicases/genética , Anemia de Fanconi/genética , Mutação de Sentido Incorreto/genética , Xeroderma Pigmentoso/genética , Síndrome de Bloom/enzimologia , Síndrome de Bloom/patologia , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/patologia , Anemia de Fanconi/enzimologia , Anemia de Fanconi/patologia , Humanos , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/patologia
7.
Mutagenesis ; 26(2): 315-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21059811

RESUMO

Reduced host cell reactivation (HCR) of a reporter gene containing 8-oxoguanine (8-oxoG) lesions in Cockayne syndrome (CS) fibroblasts has previously been attributed to increased 8-oxoG-mediated inhibition of transcription resulting from a deficiency in repair. This interpretation has been challenged by a report suggesting reduced expression from an 8-oxoG containing reporter gene occurs in all cells by a mechanism involving gene inactivation by 8-oxoG DNA glycosylase and this inactivation is strongly enhanced in the absence of the CS group B (CSB) protein. The observation of reduced gene expression in the absence of CSB protein led to speculation that decreased HCR in CS cells results from enhanced gene inactivation rather than reduced gene reactivation. Using an adenovirus-based ß-galactosidase (ß-gal) reporter gene assay, we have examined the effect of methylene blue plus visible light (MB + VL)-induced 8-oxoG lesions on the time course of gene expression in normal and CSA and CSB mutant human SV40-transformed fibroblasts, repair proficient and CSB mutant Chinese hamster ovary (CHO) cells and normal mouse embryo fibroblasts. We demonstrate that MB + VL treatment of the reporter leads to reduced expression of the damaged ß-gal reporter relative to control at early time points following infection in all cells, consistent with in vivo inhibition of RNA polII-mediated transcription. In addition, we have demonstrated HCR of reporter gene expression occurs in all cell types examined. A significant reduction in the rate of gene reactivation in human SV40-transformed cells lacking functional CSA or CSB compared to normal cells was found. Similarly, a significant reduction in the rate of reactivation in CHO cells lacking functional CSB (CHO-UV61) was observed compared to the wild-type parental counterpart (CHO-AA8). The data presented demonstrate that expression of an oxidatively damaged reporter gene is reactivated over time and that CSA and CSB are required for normal reactivation.


Assuntos
Adenoviridae/genética , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases , Enzimas Reparadoras do DNA , Genes Reporter , Fatores de Transcrição , beta-Galactosidase/metabolismo , Adenoviridae/metabolismo , Adenoviridae/efeitos da radiação , Animais , Células CHO , Linhagem Celular Transformada , Cricetinae , Cricetulus , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Regulação Viral da Expressão Gênica , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta , beta-Galactosidase/genética
8.
Clin Cancer Res ; 14(20): 6449-55, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18927284

RESUMO

PURPOSE: Ecteinascidin 743 (Et743; trabectedin, Yondelis) has recently been approved in Europe for the treatment of soft tissue sarcomas and is undergoing clinical trials for other solid tumors. Et743 selectively targets cells proficient for TC-NER, which sets it apart from other DNA alkylating agents. In the present study, we examined the effects of Et743 on RNA Pol II. EXPERIMENTAL DESIGN AND RESULTS: We report that Et743 induces the rapid and massive degradation of transcribing Pol II in various cancer cell lines and normal fibroblasts. Pol II degradation was abrogated by the proteasome inhibitor MG132 and was dependent on TC-NER. Cockayne syndrome (CS) cells and xeroderma pigmentosum (XP) cells (XPD, XPA, XPG, and XPF) were defective in Pol II degradation, whereas XPC cells whose defect is limited to global genome NER in nontranscribing regions were proficient for Pol II degradation. Complementation of the CSB and XPD cells restored Pol II degradation. We also show that cells defective for the VHL complex were defective in Pol II degradation and that complementation of those cells restores Pol II degradation. Moreover, VHL deficiency rendered cells resistant to Et743-induced cell death, a similar effect to that of TC-NER deficiency. CONCLUSION: These results suggest that both TC-NER-induced and VHL-mediated Pol II degradation play a role in cell killing by Et743.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Reparo do DNA/efeitos dos fármacos , Dioxóis/farmacologia , Neoplasias/enzimologia , RNA Polimerase II/metabolismo , Tetra-Hidroisoquinolinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Inibidores de Cisteína Proteinase/farmacologia , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Teste de Complementação Genética , Humanos , Leupeptinas/farmacologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II/genética , Sarcoma/enzimologia , Sarcoma/genética , Sarcoma/patologia , Trabectedina , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/patologia , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Doença de von Hippel-Lindau/enzimologia , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/patologia
9.
Curr Med Chem ; 15(10): 940-53, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18393852

RESUMO

Cockayne syndrome (complementation groups A and B) is a rare autosomal recessive DNA repair disorder characterized by photosensitive skin and severely impaired physical and intellectual development. The Cockayne syndrome A and B proteins intervene in the repair of DNA modifications that block the RNA polymerase in transcribed DNA sequences (transcription-coupled repair). Recent results suggest that they also have a more general role in the repair of oxidative DNA base modifications. Although the phenotypical consequences of defective repair of oxidatively damaged DNA in Cockayne syndrome are not determined, accumulation of oxidized lesions might contribute to delay the physical and intellectual development of these patients. To conceive new therapeutic strategies for this syndrome, we are investigating whether the oxidatively damaged DNA repair defect in Cockayne syndrome might be complemented by heterologous repair proteins, such as the Escherichia coli formamidopyrimidine-DNA glycosylase and endonuclease III. The complementation studies may shed light on the important lesions for the Cockayne syndrome phenotype and offer new tools for future therapies aimed at counteracting the consequences of oxidatively damaged DNA accumulation.


Assuntos
Síndrome de Cockayne/genética , Dano ao DNA , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/fisiologia , Endonucleases/fisiologia , Teste de Complementação Genética , Síndrome de Cockayne/enzimologia , Humanos , Estresse Oxidativo
10.
Oncogene ; 22(8): 1135-49, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12606941

RESUMO

Cockayne syndrome (CS) is a human hereditary disease belonging to the group of segmental progerias, and the clinical phenotype is characterized by postnatal growth failure, neurological dysfunction, cachetic dwarfism, photosensitivity, sensorineural hearing loss, and retinal degradation. CS-B cells are defective in transcription-coupled DNA repair, base excision repair, transcription, and chromatin structural organization. Using array analysis, we have examined the expression profile in CS complementation group B (CS-B) fibroblasts after exposure to oxidative stress (H2O2) before and after complete complementation with the CSB gene. The following isogenic cell lines were compared: CS-B cells (CS-B null), CS-B cells complemented with wild-type CSB (CS-B wt), and a stably transformed cell line with a point mutation in the ATPase domain of CSB (CS-B ATPase mutant). In the wt rescued cells, we detected significant induction (two-fold) of 112 genes out of the 6912 analysed. The patterns suggested an induction or upregulation of genes involved in several DNA metabolic processes including DNA repair, transcription, and signal transduction. In both CS-B mutant cell lines, we found a general deficiency in transcription after oxidative stress, suggesting that the CSB protein influenced the regulation of transcription of certain genes. Of the 6912 genes, 122 were differentially regulated by more than two-fold. Evidently, the ATPase function of CSB is biologically important as the deficiencies seen in the ATPase mutant cells are very similar to those observed in the CS-B-null cells. Some major defects are in the transcription of genes involved in DNA repair, signal transduction, and ribosomal functions.


Assuntos
Síndrome de Cockayne/patologia , DNA Helicases/fisiologia , Reparo do DNA/fisiologia , Perfilação da Expressão Gênica , Estresse Oxidativo/genética , Transcrição Gênica/fisiologia , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Northern Blotting , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/enzimologia , Linhagem Celular Transformada , Síndrome de Cockayne/enzimologia , DNA Helicases/deficiência , DNA Helicases/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA , Replicação do DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Teste de Complementação Genética , Humanos , Peróxido de Hidrogênio/toxicidade , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Recombinantes de Fusão/fisiologia , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Transfecção
11.
Nucleic Acids Res ; 30(3): 782-93, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11809892

RESUMO

Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis.


Assuntos
Adenosina Trifosfatases/química , Síndrome de Cockayne/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA/genética , Guanina/análogos & derivados , Guanina/metabolismo , Timina/análogos & derivados , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Extratos Celulares , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Síndrome de Cockayne/enzimologia , Citosina/análogos & derivados , Citosina/metabolismo , DNA Helicases/genética , Enzimas Reparadoras do DNA , Fibroblastos , Perfilação da Expressão Gênica , Teste de Complementação Genética , Humanos , Peróxido de Hidrogênio/farmacologia , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a Poli-ADP-Ribose , Estrutura Terciária de Proteína , RNA/biossíntese , Tolerância a Radiação/genética , Timina/metabolismo , Raios Ultravioleta
12.
Crit Rev Biochem Mol Biol ; 36(3): 261-90, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11450971

RESUMO

Cellular genomes are vulnerable to an array of DNA-damaging agents, of both endogenous and environmental origin. Such damage occurs at a frequency too high to be compatible with life. As a result cell death and tissue degeneration, aging and cancer are caused. To avoid this and in order for the genome to be reproduced, these damages must be corrected efficiently by DNA repair mechanisms. Eukaryotic cells have multiple mechanisms for the repair of damaged DNA. These repair systems in humans protect the genome by repairing modified bases, DNA adducts, crosslinks and double-strand breaks. The lesions in DNA are eliminated by mechanisms such as direct reversal, base excision and nucleotide excision. The base excision repair eliminates single damaged-base residues by the action of specialized DNA glycosylases and AP endonucleases. Nucleotide excision repair excises damage within oligomers that are 25 to 32 nucleotides long. This repair utilizes many proteins to remove the major UV-induced photoproducts from DNA, as well as other types of modified nucleotides. Different DNA polymerases and ligases are utilized to complete the separate pathways. The double-strand breaks in DNA are repaired by mechanisms that involve DNA protein kinase and recombination proteins. The defect in one of the repair protein results in three rare recessive syndromes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. This review describes the biochemistry of various repair processes and summarizes the clinical features and molecular mechanisms underlying these disorders.


Assuntos
DNA Helicases , Reparo do DNA , Endonucleases , Fatores de Transcrição TFII , Alquilação , Animais , Ataxia Telangiectasia/enzimologia , Ataxia Telangiectasia/genética , Pareamento Incorreto de Bases , Carbono-Oxigênio Liases/fisiologia , Quebra Cromossômica , Fragilidade Cromossômica/genética , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , Reagentes de Ligações Cruzadas/toxicidade , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Adutos de DNA , Dano ao DNA , DNA Glicosilases , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Desoxirribonuclease IV (Fago T4-Induzido) , Previsões , Genes Recessivos , Teste de Complementação Genética , Predisposição Genética para Doença , Doenças do Cabelo/enzimologia , Doenças do Cabelo/genética , Humanos , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Mamíferos/genética , Mamíferos/metabolismo , N-Glicosil Hidrolases/fisiologia , Doenças da Unha/enzimologia , Doenças da Unha/genética , Neoplasias/etiologia , Neoplasias/genética , Proteínas Nucleares , O(6)-Metilguanina-DNA Metiltransferase/fisiologia , Fotoquímica , Transtornos de Fotossensibilidade/enzimologia , Transtornos de Fotossensibilidade/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/genética , Proteínas/fisiologia , Dímeros de Pirimidina/metabolismo , Fator de Transcrição TFIIH
13.
Cell ; 101(2): 159-71, 2000 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-10786832

RESUMO

Analysis of transcription-coupled repair (TCR) of oxidative lesions here reveals strand-specific removal of 8-oxo-guanine (8-oxoG) and thymine glycol both in normal human cells and xeroderma pigmentosum (XP) cells defective in nucleotide excision repair. In contrast, Cockayne syndrome (CS) cells including CS-B, XP-B/CS, XP-D/CS, and XP-G/CS not only lack TCR but cannot remove 8-oxoG in a transcribed sequence, despite its proficient repair when not transcribed. The XP-G/CS defect uniquely slows lesion removal in nontranscribed sequences. Defective TCR leads to a mutation frequency at 8-oxoG of 30%-40% compared to the normal 1%-4%. Surprisingly, unrepaired 8-oxoG blocks transcription by RNA polymerase II. These data imply that TCR is required for polymerase release to allow repair and that CS results from defects in TCR of oxidative lesions.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Guanina/análogos & derivados , Fatores de Transcrição TFII , Fatores de Transcrição/genética , Xeroderma Pigmentoso/genética , Linhagem Celular , Síndrome de Cockayne/enzimologia , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA , Endonucleases , Fibroblastos/citologia , Guanina/metabolismo , Humanos , Mutagênese , Proteínas Nucleares , Oxirredução , Estresse Oxidativo/genética , Plasmídeos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH , Transcrição Gênica/fisiologia , Transfecção , Xeroderma Pigmentoso/enzimologia
14.
Oncogene ; 19(4): 477-89, 2000 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-10698517

RESUMO

Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration. Two genetic complementation groups (CS-A and CS-B) have been identified. The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene. We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells. The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene. In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions. UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II. This cell line (UV61/ pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells. In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis. This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway. In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential. In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.


Assuntos
Adenosina Trifosfatases/fisiologia , Apoptose/efeitos da radiação , Síndrome de Cockayne/patologia , DNA Helicases/fisiologia , Reparo do DNA/genética , Proteínas Nucleares , Proteínas Proto-Oncogênicas c-bcl-2 , Raios Ultravioleta , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Linhagem Celular , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , Cricetinae , Cricetulus , DNA/biossíntese , DNA Helicases/química , Enzimas Reparadoras do DNA , Genes p53 , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Proteínas de Ligação a Poli-ADP-Ribose , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Proto-Oncogênicas p21(ras)/análise , RNA/biossíntese , RNA Polimerase II/antagonistas & inibidores , Tolerância a Radiação/genética , Proteínas Recombinantes de Fusão/fisiologia , Deleção de Sequência , Ativação Transcricional , Transfecção , Proteína Supressora de Tumor p53/fisiologia , Raios Ultravioleta/efeitos adversos , Proteína X Associada a bcl-2
15.
Nucleic Acids Res ; 27(5): 1365-8, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9973627

RESUMO

The incision of the 8-oxoguanine in DNA by normal and Cockayne Syndrome (CS) cell extracts has been investigated. The incision in extracts derived from CS cells was approximately 50% of the incision level compared with extracts prepared from normal cells. In contrast, the incision rate of uracil and thymine glycol was not defective in CS cells. The deficiency in 8-oxoguanine incision was also demonstrated in a CS family. Whereas the proband had markedly less incision compared with the normal siblings, the parents had intermediate levels. The low level of 8-oxoguanine-DNA glycosylase in CS extracts correlates with the reduced expression of the 8-oxoguanine-DNA glycosylase gene (hOGG1) in CS cells. Both the levels of expression of the hOGG1 gene and the incision of 8-oxoguanine in DNAincreased markedly after transfection of CS-B cells with the CSB gene. We suggest that the CSB mutation leads to deficient transcription of the hOGG1 gene and thus to deficient repair of 8-oxoguanine in DNA.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/genética , Reparo do DNA , DNA/genética , Guanina/análogos & derivados , Sequência de Bases , Linhagem Celular , Síndrome de Cockayne/enzimologia , Primers do DNA , Enzimas Reparadoras do DNA , DNA-Formamidopirimidina Glicosilase , Regulação para Baixo , Guanina/metabolismo , Humanos , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Transfecção
16.
Proc Natl Acad Sci U S A ; 94(9): 4306-11, 1997 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-9113985

RESUMO

Cockayne syndrome (CS) is characterized by increased photosensitivity, growth retardation, and neurological and skeletal abnormalities. The recovery of RNA synthesis is abnormally delayed in CS cells after exposure to UV radiation. Gene-specific repair studies have shown a defect in the transcription-coupled repair (TCR) of active genes in CS cells from genetic complementation groups A and B (CS-A and CS-B). We have analyzed transcription in vivo in intact and permeabilized CS-B cells. Uridine pulse labeling in intact CS-B fibroblasts and lymphoblasts shows a reduction of approximately 50% compared with various normal cells and with cells from a patient with xeroderma pigmentosum (XP) group A. In permeabilized CS-B cells transcription in chromatin isolated under physiological conditions is reduced to about 50% of that in normal chromatin and there is a marked reduction in fluorescence intensity in transcription sites in interphase nuclei. Transcription in CS-B cells is sensitive to alpha-amanitin, suggesting that it is RNA polymerase II-dependent. The reduced transcription in CS-B cells is complemented in chromatin by the addition of normal cell extract, and in intact cells by transfection with the CSB gene. CS-B may be a primary transcription deficiency.


Assuntos
Síndrome de Cockayne/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Amanitinas/farmacologia , Linhagem Celular , Permeabilidade da Membrana Celular , Cromatina/genética , Síndrome de Cockayne/classificação , Síndrome de Cockayne/enzimologia , Reparo do DNA , Fibroblastos/citologia , Teste de Complementação Genética , Células-Tronco Hematopoéticas/citologia , Humanos , Linfócitos/citologia , Inibidores da Síntese de Ácido Nucleico
18.
Proc Natl Acad Sci U S A ; 93(21): 11586-90, 1996 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-8876179

RESUMO

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.


Assuntos
Síndrome de Cockayne/enzimologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ubiquitinas/metabolismo , Raios Ultravioleta , Linhagem Celular , Cisplatino/farmacologia , Síndrome de Cockayne/genética , Dano ao DNA , Reparo do DNA , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Fosforilação , RNA Polimerase II/efeitos da radiação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efeitos da radiação , Transcrição Gênica , Transfecção
19.
Cell Growth Differ ; 7(6): 841-6, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8780897

RESUMO

c-jun-NH2 kinases (JNK) are among the UV-activated protein kinases that play an important role in cellular stress response via the phosphorylation of c-jun, ATF2, and p53. Activation of JNK by UV irradiation requires cooperation between membrane and nuclear components, including DNA lesions per se. The role of DNA lesions in JNK activation led us to explore the inducibility of these kinases in cells of repair-deficient patients. Analyses of primary fibroblast cell lines from patients with Cockayne Syndrome of complementation group B (CS-B) revealed poor JNK activation after UV irradiation in four of five cases when compared with three repair-proficient, normal human fibroblast cell lines. Impaired ability to activate JNK persisted at various time points and with different doses of UV irradiation and coincided with failure of in vitro damaged DNA to activate these kinases. In contrast to UV irradiation, other forms of stress, such as H2O2 or heat shock were capable of inducing JNK activation in CS-B cells. Interestingly, when UV irradiation was administered after osmotic shock, it led to JNK activation in CS-B cells, indicating that alternate signal transduction pathways that are activated in response to other forms of stress can potentiate JNK activation by UV irradiation. Unlike CS-B cells, those of other repair-deficient cells, including xeroderma pigmentosum of different complementation groups, revealed proper activation of JNK by UV irradiation. Together, our findings point to deficiency of JNK activation by UV irradiation in CS-B cells, a phenomenon which may be associated with impaired CS-B, the mutant repair gene in these patients.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/efeitos da radiação , Síndrome de Cockayne/genética , Teste de Complementação Genética , Proteínas Quinases Ativadas por Mitógeno , Raios Ultravioleta , Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Linhagem Celular , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/patologia , Dano ao DNA , Reparo do DNA , Ativação Enzimática , Indução Enzimática , Fibroblastos/enzimologia , Fibroblastos/efeitos da radiação , Temperatura Alta , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Pressão Osmótica , Estresse Fisiológico/enzimologia , Estresse Fisiológico/etiologia , Estresse Fisiológico/genética
20.
Cancer Genet Cytogenet ; 87(2): 112-6, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8625255

RESUMO

DNA topoisomerase II is involved in DNA topologic changes through the formation of a cleavable complex. This is stabilized by the antitumor drug VP16, which results in DNA breakage, aberrant recombination, and cell death. In this work, we compare the chromosomal damage induced by VP16 with that induced by bleomycin (BLM) in lymphoblasts from patients affected by the chromosome breakage syndromes ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Bloom syndrome (BS), and by the progeroid syndromes Werner (WS) and Cockayne (CS). Patients affected by AT, XP, BS, and WS have a greatly enhanced risk of developing cancer. The results show that AF and WS cells are hypersensitive to VP16, as revealed in the higher proportion of metaphases showing exchange figures and more than two breaks. All lines except AT and one CS line showed normal sensitivity to BLM. Our data on the sensitivity to VP16 of all these mutant cells underline the fact that VP16 damage is amplified only in cells that have abnormal illegitimate recombination (i.e., AT and WS).


Assuntos
Doenças Genéticas Inatas/enzimologia , Linfócitos/enzimologia , Inibidores da Topoisomerase II , Ataxia Telangiectasia/sangue , Ataxia Telangiectasia/enzimologia , Bleomicina/farmacologia , Síndrome de Bloom/sangue , Síndrome de Bloom/enzimologia , Linhagem Celular , Síndrome de Cockayne/sangue , Síndrome de Cockayne/enzimologia , Dano ao DNA , Etoposídeo/farmacologia , Doenças Genéticas Inatas/sangue , Humanos , Linfócitos/efeitos dos fármacos , Síndrome de Werner/sangue , Síndrome de Werner/enzimologia , Xeroderma Pigmentoso/sangue , Xeroderma Pigmentoso/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...